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1. INTRODUCTION 

 
1.1. Motivation and objectives  
 

Magnetic materials are extensively used in high technology, first of all, in information storage on tapes, 
disks, and magnetooptical media. Magnetic markers are used for fraud and theft prevention, identification, as in 
security tags, bank checks, and as currency markers. Most of the applications are based on particulate magnetic 
materials. For example, in traditional recording media, credit cards, key cards, or as thin film recording media 
with decoupled grains. Magnetic nanocomposites of small magnetic particles, embedded in a nonmagnetic 
matrix, are in focus of investigations for application in high density recording, pigments, absorbing microwave 
coatings, ferrofluids, magnetic refrigeration, etc.   

Depending on the actual application, different range of particle size (multidomain, single-domain, 
superparamagnetic) is preferred. Some application requires high size uniformity (narrow linewidth in 
microwave materials, broad linewidth in EMI absorbers). Although the magnetic properties are specified for a 
given application, even slight changes in the technological process can lead to significant magnetic changes, 
related to microstructural variations. Due to the unique sensitivity of the magnetic properties to shape and size 
of the constituting particles, it is desirable to characterize the magnetic (in)homogeneity of these materials by 
quick, reliable and inexpensive methods. X-ray diffraction, Mossbauer spectroscopy, Scanning Transmission 
Electron Microscopy (STEM) are the raditional, sophisticated, and important tools for this purpose, but they are 
neither simple, nor inexpensive methods. Frequently, a faster, but possibly less accurate method of 
characterization of separate magnetic fractions would be sufficient, in order to give a feedback to the 
technological process. The question of quantitative magnetic characterization of non-magnetic properties, like 
the distribution of shape and size, homogeneity and uniformity, still remains open. 

It was proposed to study of Discrete Fourier Analysis of the DC remanence curves (RHL) and the 
irreversible susceptibility (SFD), as a quick and inexpensive tool for characterizing the switching field 
distribution. It is assumed that it is directly related to the microstructural peculiarities of the material, the size, 
shape, and interaction distribution of the constituting particles, i.e. magnetic identity of magnetic materials. 

In signal processing it was wellknown for a long time that the transformation of a signal from time-domain 
into the frequency domain can give much more information about the details of the signal than the original 
signal itself. The Fourier transformation is a standard tool in electrical engineering. One of the greatest 
achievements of numerical analysis during the past decades is the establishment of the theory of discrete Fourier 
transforms (DFT). One application of the DFT, - the Fast Fourier Transform (FFT) - is a routine process in 
signal processing, spectroscopy, curve fitting, noise reduction. Software FFT modules are widely available, they 
are user friendly and inexpensive. The Fourier transform is a unique fingerprint of the given magnetic material, 
- this fact is proposed for magnetic marking and identification purposes. 

 The proposed research was a natural outgrowth of an ongoing experimental investigation of the properties 
of magnetic nanocomposites. Our original efforts were directed toward finding a quick and simple method to 
characterize the (in)homogeneity of magnetic nanocomposites, prepared by reaction milling, and to follow the 
microstructural and magnetic changes during the technological process  [1-3].  

It was proposed to use the Discrete Fourier Transform (DFT) of the hysteresis loop to describe, 
characterize, compare, and identify magnetic materials, based on the statistical properties of the particle 
distribution, reflected in the DFT of the hysteresis loop. Because of the tremendous increase in speed, the FFT 
could be a routine tool to analyze, and/or identify magnetic materials.   

During the research, supported by the ARO grant, the followings tasks were completed: 
• The relationship of the classical Fourier Transform and the Discrete Fourier Transform (DFT) was 

analyzed with special emphasis on amplitude and phase relationships; 
• The analytical relationship between the Fourier spectrum and the magnetic hysteresis, the major loop, 

the major remanent hysteresis loop (RHL), and the derivative of the RHL, i.e. the Switching Field 
Distribution (SFD) curve was analyzed; 

• Different numerical distributions, corresponding to different RHL, and sums of overlapping 
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distributions, using the error function for RHL and Gaussian distribution function for SFD were 
numerically simulated to assist the understanding of the FFT representation. The models correspond to 
real composite and multiphase materials. Both amplitude and phase information was used to identify 
material properties; based on the results of simulation, a protocol of measuring hysteresis loops and 
performing the Fourier transforms was developed; 

• The proposed FFT analysis was applied to several classes of commercial magnetic materials by 
measuring the hysteresis loops on a Vibrating Sample Magnetometer, generating SFD curves by 
numerical differentiation; and applying MATLAB's FFT routine to the RHL and SFD curves. 

• Conclusions about the applicability of commercial FFT routines to characterize magnetic materials, and 
proposed further research directions were outlined. 

 
1.2. Magnetic hysteresis 

 
The industrial technology of preparation of 

commonly used magnetic materials enables different 
manufacturers to produce large quantities of the raw 
magnetic material with very similar basic magnetic 
characteristics. Magnetic materials are routinely 
characterized by their hysteretic behavior, i.e. the 
dependence of the magnetization on externally applied 
magnetic field, M vs. Happl, as illustrated in Fig.1.1. The 
hysteresis loop can be conveniently measured by a wide 
range of commercially available magnetometers. 
Saturation magnetization (Ms), coercivity (Hc), and 
remanence (Mr) are the main characteristics, obtained 
from the major hysteresis loop (MHL) measurements. 
However, the magnetic hysteresis loop provides average 
information, i.e. the mean values for the sample under 

test, which contains a large number of particles, or switching units. As in the case of any object, consisting of a 
large number of elements, it should be treated as a statistical ensemble. The upper and lower limits of the given 
property, i.e. width of the distribution, determines the critical behavior, stability, and fault tolerance of the 
system.  

Fe2O3 floppy disk medium
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Fig. 1.1 Major hysteresis loop of a floppy disk sample. 
Ms - saturation magnetization, Mr - remanent
magnetization, Hc  - coercivity. 

Therefore, the knowledge of the statistical distribution of properties is very important for the reliability of 
the system in application. Unfortunately, the hysteresis loop is not sensitive to the statistical distribution of the 
properties of the particles of the material. It is possible to reproduce magnetic materials with the same Ms, Hc, 
and Mr, and still having significantly distinct statistical distribution of shapes, sizes, defects, and interactions 
between the constituting elements of the sample under test, i.e. its microstructure. The statistical distribution is 
what makes a material unique. To measure and reproduce the mean magnetic parameters of a material, is 
relatively easy. At the same time, it is very hard to reproduce the microstructure and the statistical distribution 
of particles. This is the basis for "fingerprinting" a magnetic material. The major hysteresis loop carries only 
very limitedinformation about the statistical nature of the given magnetic material.  

The hysteresis loop is composed of a sequence of individual events of switching of the particles of a bulk 
sample. Each particle, or switching unit has a different switching field. These switching fields follow a certain 
statistical distribution. The mean value of the switching fields is the coercivity, Hc. The derivative of the major 
hysteresis loops χ= dM /dH, can be used to get information about the distribution of particle switching 
properties. The magnetization, obtained at a given value of the field, represents the contribution of the particles 
to the magnetization that have switched into the field direction. The field dependence of the magnetization thus 
is expected to reflect the distribution of particles, i.e. the derivative is related to the switching field distribution 
(SFD).  

The problem is, that the switching field distribution, as given by the dM/dH curve, is a function of several 
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factors. It contains the distribution: 1. the individual switching fields of individual particles, caused by the 
defect structure, compositional, shape and size variations; 2. the reversible contributions to the magnetization 
process, and 3. the distribution of the magnetostatic interaction fields with other particles. It is not easy to 
separate these contributions, although several theoretical attempts have been made to identify them in the frame 
of the Preisach models of magnetic hysteresis [4].  

Moreover, the hysteresis loop is shape dependent, due to the shape demagnetizing factors, N, leading to a 
demagnetizing field, HD = -NM. The state of the magnetization of the material corresponds to the internal field, 
experienced by the sample under test (SUT), and the internal field is a strong function of the shape of the 

sample 
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Fig. 1.2  DC remanent hysteresis loop (RHL) and
switching field Distribution (SFD) for a floppy disk 
recording medium of Fig.1.1. 

Hint = Happl – NM 
To illustrate the role of the shape, let's look at the 

coercivity for a long wire of a soft magnetic material, 
magnetized along the wire axis. In this case, Hc is 
negligible, and saturation is reached in a very small field, 
i.e. the hysteresis loop is practically rectangular, and its 
derivative has a very sharp peak. On the other hand, when 
the same wire is magnetized across its diameter, it takes a 
field of Happl=HD=2πMs to counteract the demagnetizing 
field, and to reach the internal field, necessary for 
saturation. In this case the derivative, i.e. the SFD has a 
broad flat shape, for the same piece of the same material. 
Evidently, here the usual definition of the SFD fails, as the 
results of the measurements depend on the shape of the 
SUT. 

To avoid the shape dependence, we've proposed to use the DC Remanent Hysteresis Loop (RHL) and its 
derivative (SFD) to obtain information about the switching field distribution [3]. The remanence, obtained at a 
given value of the field, represents the contribution of the particles to the magnetization that have irreversibly 
switched into the field direction. The RHL measurement mode is offered for all commercially available 
magnetometers. The measurement of the RHL starts with a large positive saturating field, decreased to H = 0, 
and then the remanent magnetization, Mr, is measured after reducing H = 0; then the field is lowered to -Hi, 
with subsequent return to H = 0, and the remanent magnetization, Mri, is measured again in H = 0. The sequence 
of Mr vs. -H is called the RHL. In the following, the derivative of the RHL it denoted as SFD. Fig.1.2 illustrates 
the RHL and SFD for a commercial 5" Co doped γ-Fe2O3 floppy disk. 

Based on these observations, it was proposed that instead of the major hysteresis loop to use the DC 
Remanent Hysteresis Loop (RHL) to characterize the material, and to characterize the switching field 
distribution (SFD), as a measure of the statistical distribution of the particles.  

 
1.3. Previous related research 

 
Hysteresis is a multivalued, nonlinear function, and for many years a tremendous effort was devoted to 

numerical modeling of hysteresis curves. One approach was to construct a hysteresis loop from a series of 
exponentials, from where it was a direct route to describe B(H) and M(H) curves by their Fourier components. 
Application of the Fourier transformation technique to magnetic hysteresis was proposed by several authors, as 
early as 1971 [5]. It was shown that the Fourier transform of the major hysteresis loop can be used to 
characterize magnetic materials [6-18]. 

In some previous works the Preisach model of magnetic hysteresis and the Fourier description was 
combined [19-20].  All the previous authors used the classical Fourier transform (FT) of the measured major 
hysteresis loop. Due to the inherent limitations of the classical FT, the loops should be made symmetrical and 
folded in order to have a periodic function before performing the FT. But this is only an inconvenience, 
compared to the real problem that the major loop contains information about the reversible part of the 
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magnetization and the sample shape, which would be very hard to identify in terms of the properties of the 
constituting particles. The previous authors came to the conclusion that the Fourier transform is characteristic of 
a given material, and a few components adequately describe the hysteresis loop. There was no effort to analyze 
the underlying physics and link the magnitude and phase of the Fourier components in the frequency domain to 
the composition of the material.  

From the time of the previous efforts to use the Fourier transform of the hysteresis loop, the discrete, fast FT 
(FFT) became an integral part of many commercial software packages [21-27], therefore it was proposed by this 
P.I. to use the FFT of the SFD to describe, characterize, compare, and identify magnetic materials, based on the 
statistical properties of the particle distribution, reflected in the FFT of the SFD. In this case there is no need to 
periodicize the hysteresis loop, the FFT can be directly applied to the SFD curves. Because of the tremendous 
increase in speed, the FFT could be a routine tool to analyze, and/or identify magnetic materials. 

The "magnetic" FFT could be analyzed based on the following considerations. Assume a function f(Hk) of 
field, measured at discrete values Hk. In our case we identify the M(H) dependence with this function, as H is 
changed over time H(t). Introducing the reciprocal µ space with µp=2πp/H, where p = 0,1,2,...2N-1, we may 
construct  

,)exp()(
2
1)(

12

0
∑

−

=

=
N

k
kpkp HiuHf

N
F µ    and     ∑

−

=

−=
12

0
).exp()()(

N

k
kppk HiuFHF µ

 
These functions are the discrete Fourier transform pair. Taken as a pair of mathematical relations it is exact, 

and these equations, defining 2N component vectors, become matrix equations, what can be solved by usual 
numerical methods. The inverse space, i.e. 1/H can be associated with µ = (1/Mr0) (dMr /dH), i.e. directly related 
to the SFD.  

The limitations of the discrete FT arise when we try to apply it to real physical systems and attempt a 
physical interpretation and generalization of F(µp) to a continuous F(µ). However, all real measurements are 
discrete series of data, and the DFT is, in fact, a natural tool to analyze the measured magnetization curves. To 
perform a numerical FT, the early FFT routines required that measurements should be done at equidistant field 
intervals, and the number of measurement points N should be an integer power of 2. The latest FFT modules 
(MATLAB, ORIGIN, TABLECURVE) do not require equidistant measurement points, they perform the 
interpolation, and if the number of the data points is not a power of 2, or not a prime, the datasets can be padded 
with zeros. One important precaution is to take, that any component of higher angular frequency than µN = 
2πN/H should be excluded. In fact, this is why the FFT is a powerful noise reduction tool in signal processing. 
Any commercial FFT software, available for signal analysis, can be used for separating overlapping distribution 
functions by FFT editing the frequency domain spectra - exactly what we need for characterization of multi-
component materials.   

Our results prove that the FFT spectra are very sensitive to even very slight changes in material properties, 
but one has to be careful with the interpretation. The interpretation of the results is, in fact, not a simple task. 
Indeed, it is sometimes contra-intuitive, as could be seen from the earlier Fourier analysis attempts. For 
example, a narrow statistical distribution corresponds to a broad FFT spectrum, i.e. a very large number of 
Fourier components (in the limit of a square loop, the number of components is infinite), or for a very broad 
distribution of properties, the Fourier spectrum is narrow. For overlapping distributions of composites or 
multiphase materials, having different mean values and widths, the assignment of spectral lines is not 
straightforward, and special care should be made to follow the same measurement and evaluation protocol for 
the samples to be compared, as it was developed during this research and illustrated in the following sections. 
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2. The Fourier Transform (FT) and the Discrete Fourier Transform (DFT) 

 
 
2.1. Fourier Transform (FT) 
 
    The Fourier Transform, in essence, decomposes or separates a waveform or function into sinusoids of 
different frequency which sums to the original waveform. 
    FT is a generalization of the complex Fourier series in the limit as period L → ∞.  
 

                                                                    (2-1) ∫
∞

∞−

π= dk)k(F)x(f e jkx2

   ∫
∞

∞−

π−

π
= dx)x(f

2
1)k( e jkx2F                               (2-2) 

 
Here,  
 

                               (2-3) 
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is called the forward  Fourier transform, and  
 

  [ ] dkkF
2
1xkFx e jkx21

k
π

∞
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− ∫π
== )()()(F)(f       (2-4) 

 
 
is called the inverse Fourier transform.  
 
2.2. Discrete Fourier Transform (DFT)  
 
    Because of digital computers which only work with finite number of discrete data points, computation of the 
FT of a data set, requires a technique which is widely known, called Discrete Fourier Transform (DFT). DFT 
gives N (equally spaced) discrete frequencies for N data samples, x(n) is values of samples in time domain and 
X(k) is values of samples in frequency domain. 

    DFT        ∑
−

=

−=
1
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where IDFT is Inverse DFT, which brings back the values from frequency domain to time domain. 
 
 
2.3. Fast Fourier Transform (FFT) 
 

The Fast Fourier transforms (FFT) are efficient and fast discrete Fourier transform (DFT) algorithms which 
reduce the number of computations needed for N points from 2N2 to 2N lg N, where lg is the base-2 logarithm. 
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If the function to be transformed is not harmonically related to the sampling frequency, the response of an FFT 
looks like a sinc function (although the integrated power is still correct).  

Fast Fourier transform algorithms generally fall into two classes: decimation in time, and decimation in 
frequency. The Cooley-Tukey FFT algorithm first rearranges the input elements in bit-reversed order, and then 
builds the output transform (decimation in time). The Danielson-Lanczos method breaks the DFT into two 
parts, based on the number of points as an integer power of 2. The basic idea is to break up a transform of 
length N into two transforms of length N/2. Commercial algorithms (MATLAB, ORIGIN, TABLECURVE, etc) 
are using different FFT routines, based on different approach of dealing with arbitrary numbers. Although the 
FFT of a function, or signal, is expected to be the same, this is not always the case. Frequently, the differences 
are due to the different graphical representation. It is suggested to use the same FFT algorithm to compare the 
DFT series of the materials under test. In this work MATLAB’s FFT algorithm was used, and compared to DFT 
data, obtained from ORIGIN PRO7. 

 
2.4. Definitions used 
 

In this work we apply the well-known technique of FFT to derive more information from the measured M-
H hysteresis loops and its derivative, the switching field distribution (SFD). As a model, the erf function is used 
to represent the remanent hysteresis loops (RHL) and the Gaussian function for SFD. 
 

                       d2xerf
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e
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∫ α
π
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    e 2

2

2
)x(

2
1),;x( 
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


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




σ
µ−

−

σπ
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where µ is the arithmetic mean of the Gaussian distribution, which represents Hc  
(coercivity), and σ is the standard deviation of the distribution, corresponding to SFD width. 

The relationship between the integral of the gaussian Eq.(2-8) and the error function Eq.(2-7) is as follows: 

    )
2

x(erf),;x(
2σ

µ−
=σµF                        (2-9) 

In the following, analytical and numerical calculations performed in this research will be described to show 
the sensitivity of different parameters of M-H loop with their harmonics. 
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3. FOURIER TRANSFORM (FT) AND DISCRETE FOURIER TRANSFORM (DFT) 

OF MAGNETIC HYSTERESIS 
 
3.1. Linear model of the  M-H loop 

 
  In a previous work on harmonic analysis of M-H loops it was shown on a simplified linear model how 

each harmonics will behave if we represent the M-H loops with linear segments [6]. This model assumes that 
the M-H loop can be represented with straight lines, as a time function in a way that starting from H=0 at t=0 
and the field is increased in time up to the maximum value +Hmax, then down to -Hmax, till it makes a complete 
hysteresis loop during a full period, at t=T.   

 
 

  
 

Fig.3-1 (a) M-H loop for non- zero coercivity model,  (b) time domain representation of M(t) 
  
The authors of [6] developed the sine and cosine series representation for the waveform, shown in the 

Fig.3-1(b) with coercivity (Hc) either equal zero, or a finite Hc =δ. 
    The standard Fourier series gives 
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and the results of simulation for Hc=0 in [6] were given as 
 
an=0,      for all n                                          (3-3) 
bn=0,      for even n                                      (3-4) 
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

π
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where “a” was defined as the gradient of the curve below saturation, i.e. a=dM/dt, and τ is the time spent at 
saturation, corresponding to the maximum applied magnetic field above the saturation field, τ =Hmax-Hsat. The 
results of simulation for Hc≠0 in [6] were 

 
 an=0,               for n even                             (3-6) 
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 bn=0                for n even                             (3-7) 
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for odd n. 
As it can be seen, both Fourier coefficients, an and bn, are dependent both on the coercivity δ and the time 

spent in saturation (τ), i.e. the maximum applied field above saturation. 
In this part the results of [6] are extended and revisited with another approach. Instead of expanding M(t) 

into the Fourier series of sine and cosine waves, here the complex form has been used. 
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where T is the time period of the flux wave, M(t) is magnetization in time.varying according to the following 
formulas: 
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where δ is the coercivity, Substitution into Eq.(3-10) gives: 

 
Cn= 0   for  even n                                     (3-12) 
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for all odd n 

As it can be seen from Eq.(3-13) Cn does not depend on changes in coercivity (δ), however it reflects 
changes in τ. In contrast, the phase contains the coercivity changes, but it does not depend on τ (or the time 
spent in saturation). The following figure is simulation of this calculation with MATLAB. 

 

  
Fig.3-2 (a) Phase of the first harmonics vs. δ. (b) Amplitude of the first harmonic vs. δ (coercivity)  for different values of τ (Hmax) 
 

 In the analytical sine-cosine series, both Fourier components depend on both the coercivity and on the 
maximum magnetic field above the saturation, while, as it was shown here, using the exponential form the two 
effects are separated, and can be studied independently.  

 
3.2. Non-linear (erf function) model 

 
In order to be able to predict the behavior of the harmonics of the M-H loop in more realistic way, a model 

of the loop by an error function was developed. The Fourier series coefficients were evaluated for this model. 
The erf, a cumulative Gaussian distribution is a good approximation for the behavior of the DC remanent 
hysteresis loop. 

 

 
Fig. 3-3 (a) The erf function model of the RHL hysteresis loop; (b) Time domain representation of the non-linear model of the M-H 
loop using the error function 
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This model includes all the parameters of a real M-H loop (Hc, Hmax, δ, τ) and we can have numerical 

control on each and every of them. 
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           (3-15) 

 
The only assumption in this model is that we are in the saturation region far enough that we can assume 

that within above ranges for the second and fourth terms the error function in Eq. 3-15 reaches 1 and –1 
respectively. The model was evaluated numerically, due to the lack of simple analytical integrals for the 
modified erf.  Figure (3-3-b) shows an M-H loop, represented by erf in such a way that it is unfolded in time and 
it shows a complete closed loop from  -Hmax to +Hmax, which is defined as period T of the M-H loop in time 
domain. 

The linear model of [6] gave a very good illustration of the FT of a simple model hysteresis loop. The erf 
model, introduced here in Eq. 3-16, is more realistic. In the following, this realistic model will be compared to 
the linear model, which was introduced earlier, and  with the sine-cos linear model in [6]. So, first this model is 
expanded into sine and cosine waves, according to Eq. (3-1) and Eq. (3-2), while erf is defined by Eq. (2-7). 
The Fourier coefficients can be found by substituting Eq. (2-7) into Eq. (3-15) and then applying Eq. (3-1) and 
Eq. (3-2). However, there is no simple analytical solution for these integrals. Therefore, the integrals Eq. (3-1) 
and Eq. (3-2) were solved numerically with MATLAB. 

Amazingly, we find that the linear model is a very good approximation for the M-H loop. Fig. (3-5) 
illustrates the dependence of the first coefficients on the coercivity for different maximum applied magnetic 
field, for the case of the standard deviation of σ2=0.5, which are very close to the results in [6]. In these Figs the 
coercivity is given in units of T. 

As it can be seen from Figs. (3-5) the Fourier coefficients depend very strongly on the coercivity and on the 
maximum applied field during the measurement of the hysteresis loop.  
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Fig.3-5 The erf model of the M-H loop: the amplitude of  first sine-cos coefficients a1, a3 (first row), and b1, b3 (second row) vs. 
coercivity δ (given in terms of T), for different values of τ. 

And, as it was expected, when converting to the complex coefficients, the two effects are separated, the 
complex coefficients do not depend on the coercivity, Hc shows up in the phases. 

 
Fig.3-6 The erf model of M-H loop: C1 complex amplitude of the first harmonic vs. coercivity δ for different values of τ. 
 

The model was evaluated for more realistic values of coercivity δ and σ. For the simulation shown in Fig. 
3.7. it was assumed that the maximum applied field is Hmax =6Hc, and saturation is reached at different fields, 
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i.e. for different values of parameter τ. The later assumption corresponds to the physical picture of different 
width of the Gaussian distribution of the switching fields. 

 
Fig. 3-7 Coercivity (δ) dependence of the C1 coefficient of the FT of  erf  for Hmax=6 Hc, for different values of time spent in saturation 
τ. 

 
As it can be seen from Figure 3.7, the C1 coefficients slightly depend on τ, and it takes some time to 

converge to a constant value. The ripples are numerical artifacts. So with realistic values still it can be 
concluded that the complex coefficients of Fourier series are independent of coercivity.  

 
3.3. Conclusion  

 
In this part of the research, an analytical model was developed to represent the DC remanent magnetic M-H 

hysteresis loops, based on the erf function. It was shown that the an, bn coefficients of the FT depend on the 
width of the switching field distribution through the standard deviation of the Gaussian, - underlying the erf -, 
both depend on the coercivity, represented by δ, and τ, the time spent in saturation.  The field and coercivity 
dependencies can be separated by using complex Fourier coefficients, where the absolute value just depends on 
τ, and the phase depends on coercivity. An interesting result is that the Fourier coefficients strongly depend on 
the maximum applied field, above the saturating field, i.e. the total period T of the curve. This is reasonable, 
assuming the existence of the “paraprocess”, i.e. the continuation of the alignment of the magnetization with 
the field up to fields much above saturation. The simple linear model also contains this result.  

These analytical results are the foundation to be able to analyze the DFT results, obtained by numerical 
FFT algorithms, and to recommend a measurement and evaluation protocol for analysis and comparison of the 
FFT of the RHL. 
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4.  NUMERICAL MODEL AND DEVELOPMENT OF AN FFT PROTOCOL  

FOR CHARACTERIZING MAGNETIC MATERIALS 
 
 
4.1. Numerical model 

 
Several simplifying assumptions were made in numerical simulation of the magnetic hysteresis. The 

numerical models of the SFD are based on the Gaussian distribution G of the particles in the magnetic 
materials, and on the integral of the Gaussian, the error function, erf, as the model for the RHL. Although the 
hysteresis loop is a strongly nonlinear, multivalued function of the magnetic field, this approach is not far from 
the reality, where the distribution of the particles properties in particulate magnetic materials can be assumed 
independent, following a normal distribution. 

As the hysteresis loop is a symmetric function of the magnetic field, we consider only a part of it for 
analysis (i.e. the part which can be considered to be in the second quadrant of the coordinate axes).  

The error function, corresponding to the RHL is defined by the formula  

erf =    

2
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σ π
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∫ dx                                                              (4.1)  

where  σ  is the standard deviation; and  µ  is the mean value of the function ; 
When applied to the RHL, σ corresponds to the halfwidth of the switching field distribution (SFD) curve, 

and x  in the error function is analogous to the applied magnetic field H, with µ is the mean value being the 
coercivity (Hc ). 

The derivative of the error function results in a Gaussian function. The derivative of Mr with respect to H is 
dMr/dH, which is nothing but the switching field distribution SFD when plotted against H. 

 The Gaussian function can be defined as  

                              G (x) = 
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e
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σ

σ π

− −

dx                                                             (4.2) 

4.2. The effect of the model parameters on the FFT 
 
In order to assess the influence of different material parameters on the FFT, the main parameters of the 

model (σ, µ, x and the number of points in the function) were systematically changed, and the resulting FFT 
curves were analyzed. The various parameters in the error function and Gaussian are changed one at a time 
keeping the rest constant. This enables in giving a clear picture of the effect of each parameter on the FFT.  

 The experiments are done on MATLAB. The normcdf and nornpdf functions are used to represent the 
error function and Gaussian respectively. 

Four basic numerical experiments are performed to study the effect of change in material parameters: σ (the 
width of the distribution,) and µ (the coercivity, mean), and the sampling parameters :the number of the 
"measured" points in the functions, and the magnetic field limits (period, T). 

 
4.2.1. Effect of varying the standard deviation  

To analyze the effect of different statistical distribution of the particles in different materials, the width of 
the property distribution was changed by changing the σ. Three simulations were performed. The results of two 
of the simulations are shown in Figures 4.1 and  4.2   The figures show 2 of the 3 examples of Gaussian and 
error functions, wherein all the parameters are kept constant, except the standard deviation (σ). The first set (Fig 
4.1) had the standard deviation as σ = 25; had σ = 50, and the third (Fig 4.2) as σ = 100. The mean is fixed at µ 
= –500 units; the number of points in each of the functions is kept constant at 600, and the step of incrementing, 
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deltaH  was fixed to 1 in all the examples. The fist component, i.e. the constant term of the FFT is omitted, as 
it carries no information. It is a sum of all the components. Also only the first 100 components are plotted, as 
these are coming from the FFT method, and correspond to imaginary negative harmonics. As the value of σ is 
increased, it was observed that the width of the Gaussian in the FFT also increased. The FFT of a Gaussian is 
also a Gaussian. It can be observed from the figures of the FFTs of the Gaussian that the FFT of the Gaussian 
with σ =25 is denser. Every second component of the FFT of the Gaussian with σ =25 is same as that in the FFT 
of the Gaussian with σ =50, and every fourth component is same as that in the FFT of σ =100. Homogeneous 
materials have a narrower distribution. i.e. the sigma is smaller in the gaussian, then it is wider in the erf, and 
vice versa. 

  
4.2.2. Effect of varying the limits of the Gaussian and the error function  

In order to optimize the measurement of hysteresis data, the effect of the number of data points and the 
maximum applied field after saturation, i.e. the measurement limits were investigated numerically. Figures 4.3, 
4.4, and 4.5 show 3 examples of the Gaussian and error functions where all the parameters are kept constant, 
except the number of the  "measured" points in the functions. The first set has a Gaussian and an error function, 
consisting of 300 points, the second has 600 points, and the third one has 1200 points. The standard deviation is 
kept constant at σ = 50, the mean is fixed at µ= –500 units, and the step of incrementing, deltaH is fixed to 1 in 
all the examples. Hence to change the number of points, the limits of the functions, i.e. the measurement field 
range, are varied. Another way of interpreting this would be that we are observing the change in FFT as we go 
deeper into the saturation region, i.e. +3 σ in the first set, +6 σ in the second set, and  +12σ in the 3rd set. The 
fist component of the FFT is omitted, as it carries no information. It is a sum of all the components. Also only 
the first 100 components are plotted as the second half is a mirror image of these and the ones omitted are 
insignificant to make a difference. It can be observed that for the Gaussian, the first component (first component 
in the graph plotted) in the set for 300 points (Fig 4.3) is the same as the second component in the respective 
FFTs of the 600-point set (Fig 4.4) and 3rd component of that in the 1200 point set (Fig 4.5). Thus in case of the 
Gaussian, the more we go into the saturation region, the more intermediate components we get. However in 
case of the error function, the FFT for 300 points, i.e, + 3 σ seems to have a smoother shape than the rest. As we 
go more into saturation, the low order components seem to fluctuate in magnitude. Also the first component in 
the FFT of the error function increases significantly in magnitude as we go deeper into saturation. The second 
component however remains constant at a magnitude of 20.  

 
4.2.3. Effect of varying the number of samples in the Gaussian and error function 

To optimize the time, needed for hysteresis measurements, the number of data points taken should be 
determined. To model this effect, deltaH, the incremental magnetic field step was changed, thus varying the 
number of samples in the Gaussian and error function. The effect on the FFT was analyzed. Figures 4.5, 4.6, 
and 4.7 show 3 examples of Gaussian and error functions wherein all the parameters are kept constant, except 
deltaH. Hence this in effect is related to changing the number of points in the functions. The value of deltaH is 
kept 1 in the first case (Fig 4.5), 2 in the second (Fig 4.6) and 4 in the third (Fig 4.7). As the limits of the 
function are kept fixed from H=–1200 to 200, varying deltaH is effectively varying the number of points in the 
functions from 1200 in the first one to 600 in the second, and 300 in the third .It can seen from the figures that 
the FFTs are similar for the three sets. However the magnitude of each component doubles as deltaH halves. 

 
4.2.4.  Effect of varying the mean value 

The mean value of the Gaussian and the erf corresponds to the coercivity on the magnetic hysteresis. 
Coercivity is very sensitive to microstructure and the technology of preparation of a magnetic material; 
therefore it is very important to see the effect of its change on the FFT. Figure 4.8. shows the phase of the first 6 
harmonics  of the FFT of  the measured DELTACARDS and METROCARDS (See details in Section 6). 
Interesting to note that the odd harmonics differ for the very similar samples of these sets, while the even 
harmonics are very close for all. The numerical values of the phases are distinct. Figures 4.9 and 4.10 show 2 
examples of Gaussian and error function wherein all the parameters are kept constant, except the mean value of 
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the functions  (Hc). The mean is varied from –500 in 
the first set (Fig. 4.9.), to –2500 in the next set (Fig. 
4.10.), corresponding to semihard magnetic materials as 
in credit cards and magnetic recording media). The 
results of the FFT of the Gaussians and error functions 
are identical. Hence it can be stated that the mean of the 
functions doesn’t have any effect on the FFT 
magnitudes, but it shows up in the phase. However the 
relative mean values between 2 overlapped Gaussians 
affects the resultant FFT. This is explained in the next 
section. 
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Fig. 4.8.  The frequency dependence of the phase of the 
measured 2 groups of magnetic materials. The first 6 
harmonics are shown, const term included. (ORIGINPro7)

  
 
 
 
 
 

4.2.5.  Effect of varying the magnitude of the functions  
The magnitude of the erf function corresponds to the remanent magnetization of the material under test.. 

Usually, larger Mr means larger saturation magnetization, Ms. The effect of the change of the magnetization can 
be modified by increasing the magnitude of the functions by a particular factor. It can be seen that the same 
factor for both the error function and Gaussian magnifies the respective components in the FFT.  

 
4.3. Conclusions 
  

It was shown that the Discrete Fourier Transformation (DFT) of the DC remanent hysteresis loops is very 
sensitive to the parameters of the magnetic measurements. Special care has to be taken when measuring 
materials to be analyzed, compared, and identified. In this work the FFT algorithm of the MATLAB package 
was used to obtain the DFT coefficients, although many other FFT algorithms are available, as part of a bigger 
software package. The measurement protocol should require that all/both samples were measured the same way: 

1. The limits of the measurements, i.e. the largest applied field, Hmax, should kept constant, i.e. the period 
T=constant; 

2. The field step, deltaH, i.e. the number of data points, should be kept constant for all samples and during 
the whole hysteresis measurement; i.e. the sampling rate N/T = const for all samples; 

3. The same FFT algorithm should be used for the evaluation of the data. 
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Fig  4.1   Effect of model parameters on FFT. Effect of varying the standard deviation σ on FFT:  (a) – erf ; (b) – Gaussian function; 
(c) – FFT of erf; (d) – FFT of Gaussian Function; (e) – FFT of  erf, magnitude in Log axis; (f) – FFT of Gaussian, magnitude in Log 
axis.  σ =25, Hc = -500 Oe,  # of points in both Gaussian and erf= 600.  
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Fig  4.2     Effect of model parameters on FFT. Effect of varying the standard deviation σ on FFT. (a) – erf ; (b) – Gaussian function; 
(c) – FFT of erf; (d) – FFT of Gaussian Function; (e) – FFT of  erf, magnitude in Log axis; (f) – FFT of Gaussian, magnitude in Log 
axis.  σ =100, Hc = -500 Oe,  # of points in both Gaussian and erf= 600. 
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Fig. 4.3.  Effect of model parameters on FFT.  Effect of varying the limits of Gaussian and error function: (a) – erf ;  (b) – Gaussian 
function; (c) – FFT of erf; (d) – FFT of Gaussian; (e) – FFT of  erf, magnitude in Log axis; (f) – FFT of Gaussian, magnitude in Log 
axis. σ =50, Hc = -500 Oe,  # of points in both Gaussian and erf= 300. 
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Fig 4.4.   Effect of model parameters on FFT.  Effect of varying limits of Gaussian and error function: (a) – erf ;  (b) – Gaussian 
function; (c) – FFT of erf; (d) – FFT of Gaussian; (e) – FFT of  erf, magnitude in Log axis; (f) – FFT of Gaussian, magnitude in Log 
axis. σ =50, Hc = -500 Oe,  # of points in both Gaussian and erf= 600. 
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Fig  4.5   Effect of model parameters on FFT. Effect of varying deltaH  (step of increment).  (a) – erf ;  (b) –Gaussian Function; (c) – 
FFT of erf; (d) – FFT of Gaussian; (e) – FFT of  erf, magnitude in Log axis; (f)– FFT of Gaussian, magnitude in Log axis. σ =50, Hc = 
-500 Oe,  # of points in both Gaussian and erf= 1200, deltaH =1. 
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Fig. 4.6.   Effect of model parameters on FFT. Effect of varying deltaH  (step of increment). (a) – erf;  (b) –Gaussian Function; (c) – 
FFT of erf; (d) – FFT of Gaussian ; (e) – FFT of  erf, magnitude in Log axis; (f) – FFT of Gaussian, magnitude in Log axis. σ =50, Hc 
= -500 Oe,  # of points in both Gaussian and erf= 600, deltaH =2. 

 



 25
 

 a b

c d

e f 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4.7.   Effect of model parameters on FFT. Effect of varying deltaH  (step of increment).  (a) – erf,  (b) Gaussian function; (c) – 
FFT of erf; (d) – FFT of Gaussian; (e) – FFT of  erf, magnitude in Log axis; (f)– FFT of Gaussian, magnitude in Log axis. σ =50, Hc = 
-500 Oe,  # of points in both Gaussian and erf= 300, deltaH= 4. 
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Fig. 4.9.    Effect of model parameters on FFT; Effect of varying the mean value (Hc )of the Gaussian and erf.  (a) – erf ;  (b) – 
Gaussian function; (c) – FFT of erf; (d) – FFT of Gaussian; (e) – FFT of  erf, magnitude in Log axis; (f)– FFT of Gaussian, magnitude 
in Log axis. σ =50,   # of points in both Gaussian and erf= 600, Hc = -500 Oe. 
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Fig. 4.10  Effect of model parameters on FFT. Effect of varying the mean value (Hc ) of the Gaussian and erf: (a) – erf  (b) – Gaussian; 
(c) –FFT of erf ; (d) – FFT of Gaussian; (e) –FFT of erf, magnitude in Log axis; (f) –FFT of Gaussian, magnitude in Log axis; σ =50,  
# of points in both Gaussian and erf= 600 Hc = -2500 Oe. 
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5.  SENSITIVITY OF FFT TO MAGNETIC MARKERS 

 
Magnetic markers are used for fraud and theft prevention, identification, in security tags, in bank checks, 

and as currency markers. A numerical simulation of the effect of a magnetic marker, inserted into a magnetic 
material, on the FFT of the RHL was carried out. The simulation involves the hysteresis loop and the SFD of 
two different magnetic materials. The matrix has certain coercivity, amount and/or magnetization, and a certain 
distribution of the properties, modeled with σ being the standard deviation, µ the mean value of then 
distribution, which is the coercivity, Hc, and x, corresponding to the applied magnetic field H. A marker is a 
highly homogeneous material with a very narrow switching field distribution.  

The relative position of the mean value of the marker with respect to the matrix, and the difference in 
distribution width was varied. The sum of two Gaussians is also a Gaussian, and from the linearity of FFT it 
follows that the FFT follows this rule. If two magnetic materials with similar properties and similar in amounts, 
are mixed together, the measured hysteresis loop and its FFT won't reveal that the material is a mixture. 
However, when placing a small amount of material with very different properties into the matrix, the presence 
of the marker won't be seen in the usual magnetic hysteresis measurement, but it could be identified from the 
FFT. 

Simulations were performed to find the optimal position (coercivity) of the marker with respect to the 
mean Hc, and to define the smallest amount of the marker in % of the total magnetization. Hence a Gaussian and 
error function with σ = 5 are selected to represent a marker. Table Ι shows a few of the different combinations 
of parameters that were changed in the simulations. The results of the simulations of parameters in row 1 is 
illustrated in Fig 5.3.  Figure 5.1 shows the FFTs of the Gaussian and error function selected to represent a 
standard magnetic material (matrix). The functions have 600 points, σ = 50, µ = -500, and the amount of 
magnetization  (Amplitude) A = 1. Fig 5.2 shows the FFT of the marker material. This has 600 points, σ = 5, µ 
= -500, and A = 1. Fig 5.3 shows the FFT of the mixture of the two materials, containing equal amounts of 
marker material and sample magnetic material. (Fig 5.3 thus represents the sum of a matrix shown in Fig 5.1 
and a marker of Fig 5.2, taken in equal amounts.)  Due to the linearity of FFT, The FFTs of the Gaussian and 
error function are a sum of the respective FFTs of the sample and the marker. For example the first component 
in Fig 5.1c is 180 units in magnitude and in Fig 5.2c it is 190 units. Hence the first component in Fig. 5.3c is 
370 units in magnitude. The same is true for all the other components. 
  
5.1. Effect of varying the ratio of matrix to marker 

        
The simulations of rows 2, 3 and 4  of Table Ι are shown in Figures 5.4, 5.5, and 5.6. These show the FFTs 

of the different proportions of the marker with respect to the matrix material. Fig 5.4 shows the matrix when 
both the constituent materials are equal in proportion (i.e.A1=A2=1) hence the amount of phase 1=50% and that 
of phase2=50%.  

Fig 5.5 shows the matrix when amount of phase 1=83% and the amount of phase2=17%. (i.e. A1 =1, 
A2=0.2). Fig 5.5 illustrates the case when the amount of phase1 = 91%, and of phase2 = 9%. (i.e. A1 =1, 
A2=0.1). Fig 5.6 shows the composite when the amount of phase1 = 98% and of phase2 = 2%. (i.e. A1 
=1,A2=0.01). 

It can be seen that the FFT of Gaussian is more sensitive to the presence of marker than the FFT of the 
error function. This is probably due to the significant difference in the sigma (σ) of the two materials. 

When Fig. 5.1 is compared with Figs 5.4, 5.5 and 5.6, it can be seen that as the concentration of the marker 
material falls below 10%, the FFT of the error function is almost similar to that of the original sample 
(Fig.5.1c). The difference is then seen only in the FFT of the Gaussian.  

The FFT spectrum in a logarithmic scale gives a better picture of the minute differences. The numerical 
values of the FFT coefficients (amplitude and phase) carry more information than the Figures, however, for  
illustrative purposes only the figures are shown. 
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5.2. Effect of varying the coercivity (mean value of distribution) of the marker 
 
Rows 5, 6, and 7 in Table Ι represent 3 mixtures, all having the same amount of sample material (83%) and 

that of the marker (17%) in the matrix (A1=1 A2=0.). Two of these simulations are illustrated in fig 5.7 and 5.8. 
The mean value of the marker’s distribution is varied in the three sets. i.e Hc2 = -505 in row5 (Fig 5.7), Hc2 = -
525 in row 6 , and Hc2 = -600 in row 7 (Fig 5.8). It can be seen that there is only a slight difference in the FFTs 
of the error function on varying the mean of the marker material.  Results of simulations of rows 5 and 6 are 
almost identical. This is also due to the fact that the mixture contains only 17% of marker material. Hence the 
difference in the FFT shows up only when there is a large difference in the means of the constituent materials  
as in row 7 (Fig 5.8), where the difference in the means is 100 units. Hence the difference is seen in the FFTs. 
The difference is more prominent in the FFT of the Gaussian. In general, only the first few components of the 
FFT of the Gaussian, corresponding to the SFD of the RHL, show the difference. The higher order components 
of both the error function and Gaussian do not show any difference, as they are too small to affect the sum due 
to the shift.  

It can be concluded that to observe a significant change in the FFT of error function, either the amount of 
the marker material should be high enough (about20%) in case when the marker is close to the matrix, or the 
mean (the coercivity (Hc ) of the marker material should be far apart from that of the sample material if the 
concentration of the marker material in the matrix is less than 10% ). That is the best results are abstained for a 
small amount of a marker (≤10%), having a narrow SFD, and coercivity inside the tail of the Gaussian SFD of 
the matrix.  

It is proposed to perform experimental investigation on matrix-marker magnetic nanocomposite systems to 
establish the minimum amount and optimal properties for a marker material relative to the matrix.  
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Table Ι 
Sensitivity of FFT to magnetic markers 

 
Coercivity of  
matrix, mean 

 (Hc1) 

Coercivity of 
marker mean  

(Hc2) 

Standard deviation of 
matrix (σ1) 

Standard deviation of 
marker (σ2) 

Amount of  
matrix  
(A1) 

Amount of 
marker  
(A2) 
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Fig 5.1   Sensitivity of FFT to magnetic markers.  FFT of the matrix magnetic material.  (a) – the erf of the matrix, (b) – Gaussian 
function; (c) – FFT of erf; (d) – FFT of Gaussian function; (e) – FFT of erf, magnitude  in log axis; (f) – FFT of Gaussian in log axis .  
σ =50 , Hc = -500 Oe. 
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Fig 5.2   Sensitivity of FFT to magnetic markers.  FFT of the marker material.  (a) – the erf of the marker; (b) – Gaussian function; (c) 
– FFT of erf; (d) – FFT of Gaussian function; (e) – FFT of erf, magnitude  in log axis; (f) – FFT of Gaussian in log axis σ =5, Hc = -
500 Oe. 
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f e 
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Fig 5.3   Sensitivity of FFT to magnetic markers.  FFT of the composite material; Amount Phase 1 = 50% Phase 2 = 50%.  (a) – the 
erf of the matrix; (b) – Gaussian function; (c) – FFT of erf; (d) – FFT of Gaussian function; (e) – FFT of erf, magnitude  in log axis; (f) 
– FFT of Gaussian in log axis . ; σ1 =50 Hc1 = -500 Oe A1=1, σ2 =5  Hc2 = -500 Oe  A2=1 
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Fig 5.4. Sensitivity of FFT to magnetic markers.  FFT of the composite material ; Effect of varying the   ratio of sample to marker on 
the FFT; amount Phase 1 = 83% Phase 2 = 17%.  (a) – the erf of the  matrix; (b) – Gaussian function; (c) – FFT of erf; (d) – FFT of 
Gaussian function; (e) – FFT of erf,  magnitude  in log axis; (f) – FFT of Gaussian in log axis . ;  σ1 =50  Hc1 = -500 Oe A1=1, σ2 =5  
Hc2 = -525  Oe  A2=0.2 
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Fig 5.5. Sensitivity of FFT to magnetic markers. FFT of the composite material; Effect of varying the ratio of sample to marker on the 
FFT; amount Phase 1 = 91%, Phase 2 = 9%.  (a) – the erf of the matrix; (b) – Gaussian function; (c) – FFT of erf; (d) – FFT of 
Gaussian function; (e) – FFT of erf, magnitude  in log axis; (f) – FFT of Gaussian in log axis . ;  σ1 =50  Hc1 = -500 Oe A1=1, σ2 =5  
Hc2 = -525  Oe  A2=0.1 
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Fig 5.6.  Sensitivity of FFT  to magnetic markers.  FFT of the composite material; Effect of varying the ratio of sample to marker on 
the FFT,  Amount Phase 1 = 98%, Phase 2 = 2%.  (a) – the erf of the matrix; (b) – Gaussian function; (c) – FFT of erf; (d) – FFT of 
Gaussian function; (e) – FFT of erf, magnitude  in log axis; (f) – FFT of Gaussian in log axis . σ1 =50  Hc1 = -500 Oe A1=1, σ2 =5  Hc2 
= -525  Oe  A2=0.05 
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Fig 5.7 Sensitivity of FFT to magnetic markers.  FFT of the composite material; Effect of varying the coercivity (mean value of 
distribution) of the marker on the FFT; Amount Phase 1 = 83%,  Phase 2 = 17%.  (a) – the erf of the matrix; (b) – Gaussian function; 
(c) – FFT of erf; (d) – FFT of Gaussian function; (e) – FFT of erf, magnitude  in log axis; (f) – FFT of Gaussian in log axis. σ1 =50  
Hc1 = -500 Oe A1=1, σ2 =5  Hc2 = -505  Oe  A2=0.2. 
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Fig 5.8   Sensitivity of FFT to magnetic markers.  FFT of the composite  material; Effect of varying the coercivity (mean value of 
distribution) of the marker on the FFT; amount Phase 1 = 83%, Phase 2 = 17%.  (a) – the erf of the matrix; (b) – Gaussian function; (c) 
– FFT of erf; (d) – FFT of Gaussian function; (e) – FFT of erf, magnitude  in log axis; (f) – FFT of Gaussian in log axis  ; σ1 =50  Hc1 
= -500 Oe A1=1, σ2 =5  Hc2 = -600 Oe  A2=0.2 
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6.  APPLICATION OF FFT TO MEASURED HYSTERESIS LOOPS 

 
The numerical modeling of the FFT was performed using a simple approximation to the RHL and the SFD, 

in the form of an error function and a Gaussian distribution. These functions may not exactly represent the 
hysteresis loop, however it is still a good approximation to assess the effects of various parameters on the FFT. 
Hence the results of the above sections can be applied to hysteresis loops, measured on actual control materials. 
The actually measured DHL were fitted to nonlinear functions by TABLECURVE, and the erf, i.e. Gauss 
cumulative always has a r2≥0.98. The exponentially modified erf is a slightly better approximation, and it could 
be used in the numerical experiments, however, the results, using erf, satisfactorily represent the investigated 
phenomena..  

All the measurements were performed using a Vibrating Sample Magnetometer (VSM) on GWU Northern 
Virginia Campus' s Magnetic Laboratory, established by the P.I. The software of the VSM (Made by DMS) 
includes a variety of built-in hysteresis measurements. The measurement of the major hysteresis loop and the 
DC remanence loop is a standard feature of the VSM. Mostly typical commercial magnetic materials were used 
for the test. 

Based on the results of the numerical simulation, a strict measurement protocol was set up and followed. 
The maximum applied field was set at Hmax = 6000 Oe, well above the saturation field, Hsat, of all the measured 
samples. The magnetic field step was deltaH = 5 Oe; and MATLAB’s FFT was used. As the mass/volume of 
the samples is not known, the magnitude of the VSM signal might differ for the members of the pairs of 
samples. The following experiments were performed: 

1. Two identical samples were tested to see if there are any differences due to the measurement and 
evaluation procedure applied; 

2. Two similar samples were measured, originating supposedly from the same manufacturer, but at 
different times, where subtle changes were expected; 

3. Three samples taken from the technological process of preparing Fe-ZnO magnetic nanocomposites were 
chosen in order to see the effect of large differences on the FFT. 

 
6.1. DELTACARD 
 

Two circular samples of 5mm diameter were cut from the 
same frequent flyer card (“Deltacard”). The DC remanent loop 
(RHL) was measured on the VSM for both. The SFD was 
obtained by numerical differentiation of the Mr(H)  curves. 
Numerical differentiation is very sensitive to measurement 
errors. Although the magnetization of the cards is not extremely 
low, the amount of the sample is very small, such that a sensitive 
range (10-3 emu) of the VSM had to be used.  

The measured major and remanent hysteresis loops are 
shown in Fig.6.1 for both DELTACARD samples.  

Figs. 6.2 and 6.3  show the measured RHL, the calculated 
SFD, and the FFT applied to both curves, represented both in 

linear and log scale.  
As both samples were cut from the same card, it was expected 

that the two are identical, and any difference in either the magnetic measurements, or in the FFT is due to errors 
in the procedures. As it can be seen, both the measured data, and both the FFT in Fig 6.2 and Fig 6.3 are 
seemingly identical. However, closer inspection of numerical data for the Fourier coefficients and phase data 
show some differences (see Fig. 4.8.). Further experiments are necessary to reveal the if these discrepancies are 
due to real material differences or due to the limits of  the RHL measurements as reflected in FFT accuracy. 
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Fig. 6.1. Measured major and DC remanent  
hysteresis loops for two DELTACARD samples. 
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6.2.  METROCARD 

In this experiment, samples were cut from two different 
Washington DC subway farecards (METROCARD). It is 
assumed, that the material comes from the same manufacturer, 
and the properties of the samples are very close. They might 
have been made at different times, and there might be some 
subtle changes. 

The measured major and remanent hysteresis loops are 
shown in Fig. 6.4. The measured magnetization values are 
normalized to the saturation magnetization to see the subtle 
differences in the behavior of the two nearly identical samples. 
Figures 6.5 and 6.6 show the FFTs of two different metro 

cards. The 2 figures have FFTs similar in nature but different in 
magnitude, due to the different value of the magnetization of the 
two samples. When the FFT is performed over data, normalized 
to the Mr0 value, they become identical, proving that the 
manufacturing of the Washington DC subway farecards is a 

consistent process, based on the same raw materials and same technology, - at least for those farecards, 
purchased during the second half of November 2002. 

Metrocard

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-6000 -4000 -2000 0 2000 4000 6000

Magnetic field, Oe

M
ag

ne
tiz

at
io

n,
no

rm
al

iz
ed

 

Mx2
Mx1
Mr1
Mrx2

Fig.6.4. Normalized major and DC remanent
hysteresis loop measurement data  for two
METROCARD samples 

 
6.3. Fe-Zn nanocomposites 

 
Figures 6.7 and 6.8 show the evaluation of measured data for Fe-ZnO magnetic nanocomposites, prepared 

by mechanochemistry (Courtesy of Physics Dept, UMBC, Prof. L. Takacs). The nanocomposites were prepared 
by reaction milling, according to the following reaction: Fe3O4 + 4 Zn = 3 Fe + 4ZnO. Starting from the 
relatively large size, magnetically semihard magnetite particles, the end product is nanosize pure Fe particles, 
embedded in an insulating, nonmagnetic ZnO matrix. The coercivity of the Fe particles depends very sensitively 
on the microstructure, size, shape, stress state, and interaction effects in the system. According to X-ray, 
Mössbauer and STEM data, during the actual chemical reaction process there are several intermediate phases 
present, and the size distribution of the Fe particles is continuously changing during the milling process [2]. 

This system seems ideal for investigating its properties through FFT, and establish the correlation between 
the change of the characteristics of the FFT spectrum (amplitude and phase) and results, obtained by traditional 
methods. Figures 6.7 and 6.8. illustrate the magnetite-zinc system, showing the measured RHL and numerical 
derivatives, i.e. the SFD curves, together with their corresponding FFT spectra. Fig.6.7 is for a sample at the 
beginning of the ball milling (20 min), when the magnetic phase consists mostly of the semihard magnetite 
phase. Fig 6.8. illustrates the nanocomposite after 300 min of milling, when most of the iron is already in the 
single domain range, with an increased coercivity. The original measurements did not follow the protocol, 
developed in the present work, and the number of data points and the magnetic field limits are different for the 
two sets of data, thus the comparison can be only qualitative. Moreover, numerical differentiation makes the 
FFT of the SFD curves very noisy, thus unusable for identification of finer details. 
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Fig 6.2   Application of FFT to measured hysteresis loops. (a) –RHL for DELTACARD1; (b) - calculated SFD for the RHL; (c) –FFT 
of RHL; (d) - FFT of the SFD;  (e) - FFT of RHL, magnitude in log axis ; (f) FFT of SFD, magnitude in log  axis. 
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Fig 6. 3.   Application of FFT to measured hysteresis loops; (a) –RHL for DELTACARD2; (b)- calculated SFD for the RHL; (c) – 
FFT of RHL; (d) - FFT of the SFD; (e) - FFT of RHL, magnitude in log axis; (f) FFT of SFD, magnitude in log axis 
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Fig 6.5   Application of FFT to measured hysteresis loops; (a) –RHL for METROCARD1; (b) - calculated SFD for the RHL; (c) – 
FFT of RHL; (d) - FFT of the SFD; (e) - FFT of RHL, magnitude in log axis; (f) -  FFT of SFD, magnitude in log axis 
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Fig 6.6   Application of FFT to measured hysteresis loops; (a) – RHL for METROCARD2; (b) - calculated SFD for the RHL; (c) – 
FFT of RHL; (d) - FFT of the SFD; (e) - FFT of RHL, magnitude in log axis; (f) - FFT of SFD, magnitude in log axis 
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Fig 6.7   Application of FFT to measured hysteresis loops for a series of Fe-ZnO magnetic nanocomposites.  (a) –RHL for FeZn200 
(initial mixture); (b) - calculated SFD for the RHL; (c) – FFT of RHL; (d) - FFT of the SFD; (e) -FFT of RHL, magnitude in log axis; 
f) -  FFT of SFD, magnitude in log axis 
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Fig 6.8.  Application of FFT to measured hysteresis loops for a series of Fe-ZnO magnetic nanocomposites.  (a) –RHL for FeZn202 
(300 min milling); (b) - calculated SFD for the RHL; (c) – FFT of RHL; (d) - FFT of the SFD; (e) - FFT of RHL, magnitude in log 
axis; (f) - FFT of SFD, magnitude in log axis 
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7. CONCLUSIONS AND FUTURE RESEARCH  DIRECTIONS 
 

The research, performed in the frame of this Project, supported by the U. S. Army Research Office, has 
shown that applying the FFT to the DC remanent hysteresis loops (RHL) and the switching field distribution 
(SFD) is a novel approach to magnetic material characterization, connecting technology related microstructural 
effects, traditional magnetic measurements, and modern signal processing methods to contribute to our basic 
knowledge about hysteresis with potentially useful applications.  

 
7.1. Summary of main results 
 
The main results of the research are as follow: 
� The well-known technique of FFT was used to derive more information from the measured RHL and its 

derivative, the SFD. In the numerical analysis and simulations the erf function is used to represent the RHL 
and the Gaussian function for the SFD. 

� Magnetic measurements, as time series, were analyzed in the terms of the Fourier Transform (FT), the 
Discrete Fourier Transform (DFT), and Fast Fourier Transform (FFT) algorithms. Correspondence between 
the FT parameters and magnetization, coercivity, saturation field, and magnetic property distribution width 
was established. 

� It was shown analytically that the an, bn coefficients of the FT depend on the width of the switching field 
distribution through the standard deviation of the Gaussian distribution, both sets depend on the coercivity, 
represented by δ, and on τ, the time spent in saturation. The field and the coercivity dependence can be 
separated by using complex Fourier coefficients, where the amplitude depends on τ, and the phase depends 
on coercivity. The Fourier coefficients strongly depend on the maximum applied field above the saturating 
field.  

� The effects of the model parameters on the FFT of erf and Gaussian were numerically simulated, by 
systematically changing the magnetic parameters of the trial functions and the sampling parameters. Based 
on the results of the analytical study and the numerical models, a measurement and FFT protocol for 
analyzing, comparing, and identifying magnetic materials was developed. 

� As an application example, the sensitivity of FFT to magnetic markers was investigated numerically, by 
varying the matrix/marker ratio, and the coercivity of the marker. 

� As a practical application, the measurement and FFT protocol, developed in this research, were applied 
commercial magnetic media (DELTACARD, METROCARD) and Fe-Zn nanocomposites.  

� Based on the results, two Abstracts have been submitted to international conferences: 
“Discrete Fourier Analysis of the  Magnetic Hysteresis” by  M. Pardavi-Horvath, S. Morshed, and S. 
Srinivasan to the 3rd International Conference on Hysteresis and Micromagnetic Modeling HMM2003, 
to be held  in May, 2003,  Salamanca, Spain. If accepted, the Proceedings will be published in 
PHYSICA B. 
“Fourier Analysis of Magnetic Hysteresis “ by M. Pardavi-Horvath, S. Morshed, and S. Srinivasan, to 
the International Congress on Magnetism ICM 2003, to be held in July 2003, in Rome, Italy. If accepted, 
the Proceedings will be published in JMMM. 

� There is a significant contribution of the research performed to the education of our students. Two graduate 
students (one female), and one undergraduate (minority) students were involved in the project. They’ve got 
a valuable experience in magnetics, numerical and “real” experiments, data acquisition and evaluation, 
signal processing, and teamwork, - all combined and applied to one focused topic of the FFT of RHL. 

 
7.2. Proposed further research 
 

This project focused on understanding the underlying physics of the FFT of magnetic hysteresis, using 
mostly numerical simulation tools.  The real proof of the method would be its systematic application to RHL 
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curves, measured on well-characterized series of real materials. It was shown that the FFT is an important tool 
in characterizing magnetic materials, if applied with caution and taking into account certain constraints. 

One of the open questions is the information, contained in the phase of the complex Fourier coefficients,  as 
one of the most important characteristics, the coercivity, is hidden in the phase of the Fourier components. A 
study of a series of materials, with systematically varying coercivity, while the magnetization is kept as constant 
as possible, would be a good test of the phase relationships. It is proposed to investigate a series of Fe- 
Dielectric Metal Oxide composites where, during the process of mechanochemical preparation, the decrease in 
size of the pure Fe particles is accompanied by increasing coercivity. VSM, XRD and TEM measurements 
could serve as control measurements. The P.I. and her colleague (UMBC, Prof Takacs) are pioneers of bulk 
magnetic nanocomposites, and they have an extensive background in the preparation and control of magnetic 
properties of reaction milled iron based composites. 

Another intriguing problem is the design of a magnetic marker in a magnetic material. Numerical 
simulations, performed in this research, revealed the most important design principles, the phase, coercivity, 
and amplitude relationships between a magnetic matrix and a magnetic marker. Again, a mixture of magnetic 
nanocomposites, having controlled coercivities, could serve as a good model material to test the predictions of 
this project. At the same time, further numerical simulations of the FFT of different (numerical) mixtures of 
hysteresis loops, measured on “real” materials, could facilitate the design. 
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